
(NASA-CB-126039) USING A SMALL/LOW COST
COMPUTER IN AN INFORMATION CENTER D.U.
Wilde {Connecticut Univ.~ [1972] 12 P
CSCL 09B

N72-21210J

Unclas
G3/08 __ 24249

USING A SMALL/LOW COST COMPUTER IN AN INFORMATION CENTER*

Daniel U. Wilde

New England Research Applications Center
University of Connecticut

Storrs, Connecticut

Abstract

In the past, mechanization has been limited to those information

centers that have access to extensive computer facilities. Now,

small/low cost computers are available with I/O capacities that make

them suitable for SDI and retrospective searching on any of the many

commercially available data bases. A small two-tape computer system

is assumed, and an analysis of its run-time equations leads to a three-

step search procedure. Run times and costs are shown as a function of

file size, number of search terms, and input transmission rates. Actual

examples verify that it is economically feasible for an information

center to consider its own small, dedicated computer system.

* This research was sponsored in part by the National Aeronautics and
Space Administration Contract NASW - 2307.

REPRODUC EO BY
NATJONAl TECHNICAL
INFORMATION SERVICE

us. DEPARTMENT OF COMMERCE
SPRINGFiElD. VA. 22161

1\

\

I

Introduction

Until recently, information center mechanization has been limited

to those centers that have access to extensive computer facilities.

Although the amount of machine time that a center uses may be small,

the center is dependent upon the services of highly specialized computer

personnel. Consequently, computerization has occurred in large centers

that can afford their own computer system or those centers that have

convenient access to someone else's machine.

By now, the small computer has gained wide acceptance and its

use for special applications has become commonplace. For example,

Warheit (1) suggests the IBM System/3 as a small, general purpose computer

which can perform a great variety of library jobs, such as controlling

book circulation and producing overdue notices. Furthermore, he feels

that it is cheap enough so that many libraries which formerly could not

afford computer services now have the opportunity to have their own

system (2).

IBM has recently announced that inexpensive tape drives will soon

be available for its System/3. This means that this machine can be used

by information centers to process externally produced data bases that are

distributed on tape, such as the Library of Congress MARC file. In

addition, it will be possible to use this system for SDI and retrospective

searching on any of the many commercially available data bases. Let us

now consider how this might be done with a small/low cost computer.

The Computer System

At this point, let us assume that the computer budget is limited

and that hardware costs are to be kept low. Therefore, let us begin

with the small system described by Warheit and add two tape drives.

Now, we have a machine that includes a small CPU with limited memory,

a card input/output device, a printer, and two tape drives. This

minimal configuration in a System/3 will rent for approximately

$2,600.00 to $2,900.00 per month when tapes are available. This same

configuration is currently available in an IBM 1130 and rents for

approximately $2,700.00 to $3,400.00 per month. Both include a small

disk for storage of a monitor and user programs.

Search Procedure

With such a small machine, random access searching on inverted

files is out of the question. This is particularly true for large data

bases, such as the American Society for Metals (ASM) file of 125,000

documents or the National Aeronautics and Space Administration (NASA)

file of 650,000. Furthermore, file inversion on such a limited machine

would be relatively difficult since the system includes just two tapes

and one small disk. Consequently, both search and file maintenance

procedures dictate that data files be organized in a linear mode. This

requires that each and every document be examined during each search.

Needless to say, this may result in long search runs.

2

Appendix I shows equations that can be used to predict linear search

times. Analysis of these equations shows that run time is a function of

three sets of parameters. The first set is dictated by the data file

and includes the number of data bank documents and the average number

of index terms per document. The second set is determined by the

computer and includes average instruction execution time, start time of

the input tape drive, and time to transmit one input character from the

drive to memory. The third set is specified by the information center

and includes the average number of characters per input document and the

number of search terms per retrieval run. Let us now consider how these

last two parameters can be varied hy the information center so as to

lessen search times.

The average number of input characters can be reduced by eliminating

non-essential information from the data file. Here, document records are

edited to conform to the needs and demands of center users. On a small

machine with limited memory, this reformating may require multiple passes.

Here, the output tape is used for storage of intermediate results which

become the input to the next pass.

The number of search terms can be reduced by examining the construc

tion of search strategies. For simplicity, let us assume Boolean logic.

From the equation

S • A * (B + C) + 0 * E

it can be seen that if S is to be true, then one of the following abbre

viated equations, Si' must also be true.

3

S3 = B + C + 0 S4 = B + C + E

4

If for a given document an Si is false, then S is also false. Therefore,

S need only be evaluated for those documents for which Si is true.

This approach leads to a three-step retrieval procedure. In the

first step, the complete file is searched using an abbreviated strategy, Si'

Here, documents are read from the data file using one tape drive as input.

When a document is found that satisfies Si' it is copied onto the other

tape. If a document does not satisfy Si' it is skipped since it cannot

fulfill S. After the complete data file has been scanned, the output file

contains the subset of documents that satisfies Sit During the second step,

this sub·file is searched using the complete strategy, S. When a document

is found that satisfies S, it is copied onto the output file along with a

tag that identifies its requestor. Finally, in the third step, search

results are printed. Here, documents are grouped together by requestor

by passing the print tape once for each request.

Generally, run time for the first step is minimized by selecting an

abbreviated strategy which contains the least number of terms. For the S

shown above, this implies Sl or S2' Second-step run time is minimized by

selecting the abbreviated strategy which produces the smallest output during

the first step. Here, to make a final choice, we must know the relative

occurrences of terms: A, 0, and E. Lastly, print time during the third

step depends upon the number of documents retrieved by S in the second step.

If several searches are batched together, the abbreviated equation for

5

the first step is simply the sum of the individual abbreviated equations.

On the other hand, abbreviated strategies can be selected so as to permit

the strategy designer to iteratively partition his data base into sub

files and to quickly examine sub-file content as described in Wilde (3).

In contrast, abbreviated strategies can be designed such that several

complete strategies can be run in parallel during the second step as

suggested by Junkins and Schultz (4).

Search Times

The equations in Appendix 1 predict that search time grows linearly

as the number of search terms increases. This is confirmed by experimental

data displayed in Figure 1. Here, run time per 10,000 documents is shown

for three different input transmission rates as a function of the number

of abbreviated strategy terms. These graphs can be used to estimate run

times for different system configurations and data file sizes. For

example, an SDI search of 25 abbreviated terms on an update of 5,000

documents using a l5kc input drive takes approximately

5,000 doc.

10,000 doc.
4.26 min. ~ 2.1 min.

Similarly, a retrospective search of 10 abbreviated terms on a file of

650,000 documents using a 60kc drive takes approximately

650,000 doc.

10,000 doc.
1.14 min. ~ 75 min.

6

Figure 1 - Run Time versus Search Terms (IBM 1130 - No overlap)

mlo. /
"1/0,000 .\0<'.

15k(.,
.-

5

4
- ...

• .-.___---
.-....

--11------·----1-·- .

2.5

te(ms
J-- ._.'- ~.. _.... ··-·---tl------'>~

50 15 /00

Search costs can be estimated by multiplying predicted run times

by computer rates. Table 1 presents a set of monthly and hourly rates

for a two-tape IBM 1130 system using the same three input speeds shown in

Figure 1. (Hourly rates assume 176 hours/month.) Here. rates are given

for a total system and for tapes alone. This latter figure would be

appropriate if a non-tape system were already installed and if the extra

tape costs were of interest.

Using the same examples as above. the system cost for the SDI would

be

$17 .90/hr.

60 min/hr.
2.1 min. ~ $.65

7

while the tape-only cost for the retrospective would be

$10.94/hr.

60 min/hr.
75 min. ~ $13.70

Summary

If an information center is to be successful, it must be responsive

to the demands of its users and clients. If a center has its own computer

system, it can schedule batched runs, special runs, or evening runs in

order to satisfy client demands, to meet higher priorities, or to

overcome equipment failures. When a center has its own machine, it is

paying a flat rental fee or fixed monthly amortization charge. Thus,

additional computer use results in a lower per unit cost. Until recently,

computer systems with good I/O were too expensive for most centers.

Now, small/low cost machines are available that permit a center to consider

acquiring its own dedicated computer system.

Acknowledgement

I would like to thank Mr. Stuart Harris for his aid in programming

the NERAC search system and Mrs. Susan Abramson for her help in generating

the test data.

8

Appendix I - Search Time Equations

Total run time, Trun , for a linear search is a function of total

central processor time, Tcpu, and total tape time, Ttape • If computer

operations are overlapped, Trun equals the larger of Tcpu and Ttape • If

they are not, Trun equals the sum of Tcpu and Ttape •

Total tape time, Ttape ' is a function of total input time, Tinput'

and total output time, Toutput. Generally, since the number of retrieved

documents is much less than the number of data bank documents, T t tou pu

is very small relative to Tinput. Therefore, for simplicity, Toutput

is ignored.

Tinput is the sum of the time spent starting the input tape drive,

Tstart' the time transmitting information from the drive to memory, Ttrans'

and the time stopping the drive, Tstop • Even the most elementary tape

drive sends an end-of-transmission signal at each inter-record gap; and

thus, there is no need to wait for the drive to stop. Therefore,

= Tstart + Ttrans (1)

The total time spent starting the input drive is the product of the

time per start, tstart' and the number of starts during a search. If the

file being searched contains Ndoc and if the input tape is blocked at an

average of nblock documents per block, then total start time is

Tstart = tstart (2)

9

The total tape transmission time is the product of the number of

documents, Ndoc ' the average number of characters transmitted per

document, nchar ' and the time to transmit each character, t char ' There

fore, total transmission time is

T .
trans = (3)

Total tape time is then found by substituting (2) and (3) into (1)

producing

T - N {tstarttape - doc
nb10ck

+ Dehar • tCha~ (4)

The total central processing time, Tcpu' can be expressed as the

product of the number of documents, Ndoc ' and the average time to process

each document, t doc '

Here, the average time to process each document is the product of

(5)

the average number of instructions to process that document, ninst, times

the time to execute an average instruction, tinsto

t doc = n tinst' inst (6)

In processing a linear file, document terms must be compared against

question terms. The algorithm chosen to perform these comparisons must

be a function of the average number of index terms per document, idoc,

10

and the number of retrieval search terms, isearch. If each document

term is compared against each search term, then the average number of

instructions to process each document is

isearch • ncomp + nhouse (7)

where ncomp specifies the number of instructions to make a term com

parison while nhouse represents the instructions to perform housekeeping

functions. If both search and document terms have been previously sorted,

this expression can be improved to

(8)

Substituting (6) and (8) into (5), total CPU time becomes

Tcpu = Ndoc ' 1l (idoc + isearch) • ncomp + "housejr • t in5t (9)

Examination of equations (4) and (9) shows that run time is a

function of three independent sets of constraints. The first set is

dictated by the data file and includes the number of data bank documents

and the average number of index terms per document. The second set is

determined by the computer and includes average instruction execution time,

start time of the input tape drive, and time to transmit one input character

from the drive to memory. The third set is specified by the information

center and includes the average number of documents per input block, the

average number of characters per input document, and the number of search

terms per retrieval run. Here, the number of documents per block should be

adjusted so as to produce a balanced run where tape time and CPU time are

nearly equal. Balancing is discussed in Gildersleeve (5).

References

1. Warheit, I.A., The Small Computer and the Library, Proceedings
of the American Society for Information Science, Volume 7,
1970, PP. 91-93.

2. , Library Automation: The IBM System/3, IBM
Corporation, In Press.

11

3.

4.

s.

Wilde, D.U., Iterative Stxategy Design, American Documentation,
January, 1969, pp. 90-91.

Junkins, K. and L. Schultz, An Alternate Strategy to Iterative
Searching, proCeedin!S of the American Society for Information
Science, Volume 7, 1 70, pp. 323-325.

Gildersleeve, T.R., Desif§ of Sequential File Systems, Wiley
Irtterscience, New York, 71.

